Motivation and objective

Drought is a complex natural hazard with severe environmental and socio-economic impacts. To improve drought monitoring and early warning systems, we need to better understand the link between hydro-climatic drought indicators and impacts on the environment, society, and the economy. The objective of this study is to learn about the meaning of different drought indicators for impact occurrence on the ground through exploring the European Drought Impact Report Inventory (EDIII). For two countries well covered in the EDII – Germany and the UK – the following research questions shall be answered:

- Which indicator(s) best explain(s) drought impact occurrence?
- Can we identify indicator thresholds that are critical for impact occurrence?

Past drought impacts

Number of impact occurrences 1970-2012

- per NUTS3 region in Germany (DE)
- per NUTS3 region in the UK
- for Germany and the UK over time

Impact information from the European Drought Impact Report Inventory (EDII): textual evidence of drought impacts

Drought indicators:

- Standardized Precipitation Index (SPI)
- Standardized Precipitation Evaporation Index (SPEI)
- Streamflow percentiles (Q)
- Groundwater level percentiles (G)

Variable importance and splitting values of important predictors are used to address the research questions.

A regression tree explains the variation of a response variable by recursively splitting the data into more homogeneous groups based on combinations of explanatory variables. A random forest (Breiman, 2001) represents a machine learning algorithm, where a large number of classification or regression trees are grown on a bootstrapped subsample of the data (≈2/3). The remaining data (‘out-of-bag’) are used to estimate the prediction error and the variable importance of each predictor.

Preliminary results

Performance of drought indicators

There are distinct patterns regarding ‘best’ indicators for drought impact occurrence:

- In Germany, intermediate accumulation periods (3-6 months) of SPI and SPEI generally perform best; SPEI often outperforms SPI. In the UK, longer accumulation periods (8-24 months) of SPI and SPEI show top ranks. Streamflow (Q) is a high-scoring predictor for some NUTS3 regions in Germany, yet not in the UK.

Random Forests

One model per NUTS3 region 1970-2012

Response variable: Number of impact occurrences per month

Predictors:

- SPI and SPEI for 1, 8, 12, and 24 months
- Streamflow and groundwater level percentiles

Indicator thresholds

The graph on the left displays the distribution of splitting values of the best ranking drought indicators selected during the random forest construction for two example NUTS3 regions Brandenburg (BB) and Southwest England (SWE). A single threshold value cannot be identified; however, the median of the splitting value distribution could serve as a reference value triggering drought management actions.

Conclusion

The preliminary results demonstrate the value of text-based information on drought impacts for learning about the meaning of different hydro-climatic drought indicators. Different ‘best’ predictors for drought impact occurrence were identified through the ‘RandomForest’ analysis for Germany and the UK at the NUTS3 region level. The tree model approach also allows identifying splitting values that may represent critical thresholds for impact occurrence. Overall, knowledge on the indicator-impact relationship can help to ‘ground-truth’ drought indicators and thus improve drought monitoring and early warning systems.