How Energy Crops Affect Soil Hydrology: Recharge, Residence Times and Resilience
Hannes Leistart, Barbara Herbstritt & Markus Weller

Research Areas Lignocellulose / Biogas – Interconnected Project

Introduction
Increase of bioenergy will result in changes in land use and may generate new chances and risks. We developed a new, rapid measurement approach to investigate the influence of energy plants on the water cycle. The environmental assessment is focusing on water use and water quality, percolation, risk of erosion and nutrient export from the different energy plants. A database for Baden-Württemberg (BW) to be used by the energy sector and for water management for a targeted use of energy plants is in development. It can be used to propose new land use planning to find the optimum between water protection and bioenergy use.

Methods and approach

Field Campaign
- 11 Sites and 89 Plots in BW
- 70 Energy Plant Plots
- 11 Infiltration Experiments

Lab Analytics
- 1150 Soil Samples
- N-NO₃
- Stable Isotopes: ¹⁸O, ²H

Models
- Data Regionalization
- Soil Model Development
- Soil Model Validation
- Prediction

Results

- Deep Percolation
- Transit Times
- Nitrate Resilience
- Water + Mass Balances

Example for model validation: field data and modelled data after and before vegetation period of one location near Karlsruhe, land use: willow.

→ Model validation is reliable, simulated isotope profiles are in good agreement with observations in the field.
→ Multiple years of water and mass balances.
→ Percolation is strongly influenced by land use and climate.
→ Transit Time is influenced by a combination of soil type, climate and land use, but the effect of soil type is very strong.
→ Resilience defined for the non-vegetation period is strongly influenced by soil type.
→ High variability of transit times and resilience are due to high variability of the temporal distribution of precipitation.

Conclusion
- Assessment method of the influence of energy crops on the water cycle is established.
- Multiple years of site water balances are gained without an expensive and maintenance intensive measurement system.
- Data can be used for bioenergy land use planning and water protection.
- True pressure on a system is always a combination of theoretical resilience and true input (e.g. fertilization, soil compaction).

Model runs for three BW climates (columns), three different land use types (y-axis) and different soil types (x-axis). The colors represent a mean value of each result. Upper row: percolation below one meter (% of precipitation (P)); middle row: transit time of the fastest 30% to a depth of 1m (minima (italic) and maxima (bold)); lower row: resilience (R) (maxima (bold) and minima (italic)) ➔ low R-values indicate high leaching risk.