Processes of dissipation of pesticides and hydrological tracers in a wetland mesocosm

Elena Fernández-Pascual(1), Friederike Lang(2), Jens Lange(1)

1 Introduction

The effectiveness of hydrological tracers to investigate potential dissipation pathways of pesticides in wetland systems has already been proven. However, little is known about their suitability to assess "where" and "when" such processes might take place, which ultimately represent essential information for modeling their transport and fate in the environment. Thus, we have conducted a mesocosm experiment where we combined the analysis of three hydrological tracers (bromide, uranine and sulfotetradimine B) and three pesticides (Boscalid, Periconazol and Metazachlor) with high-resolution vertical monitoring of physical and chemical gradients in a vegetated redox-dynamic environment.

2 Method

- The mesocosm was designed as a vertical subsurface-flow system.
- One half was planted with two species of common wetland plants (Typha latifolia and Phragmites australis).
- All sensors were installed at pre-selected depths and a resolution of 12 cm.
- The experiment was running a total of 6 months during which two repetitions (injectors) under identical conditions were done.

3 Results and Discussion

Temporal & spatial evolution:
- The development of the physicochemical parameters was driven by the changes produced during the drying and rewetting phases.

Mass Balance:
- The overall tracer mass balance revealed that the main dissipation processes were degradation, sorption and plant uptake.
- Two transformation products from Metazachlor were detected: Metazachlor ethane sulfonyl acid (ESA) and oxalic acid (OA).

Process evaluation:
1. Transport:
- Transport processes predominated over the experiment as shown by the high overall correlations between bromide and the tracers and pesticides.
- Correlation became weaker at the end of the drying phase and beginning of saturation.
- Results were similar for the two injections indicating constant dissipation rates.

2. Degradation:
- Correlation matrices indicated a different behavior depending on the depth of the layer and the availability of oxygen.
- Transformation products of Metazachlor were formed in the uppermost layer (0-3 cm) under oxic conditions.
- UR and Metazachlor were anaerobically degraded in the deeper layers according to their negative correlations with Eh and nitrate.

4 Conclusion

- Degradation, sorption and plant uptake were the main dissipation processes found in this study. However, transport has dominated most of the time with the exception of a transition period from drying to saturation when other processes, presumably sorption and degradation, were more prominent.
- Similar recoveries of tracers and pesticides in the two injections suggested that the system did not evolve in terms of a more specialized microbial community.
- Degradation was the main dissipation pathway of UR and Metazachlor in the sediment under both aerobic and anaerobic conditions.