The beauty of long-term hydrological datasets: Showcasing four different catchments in South-Western Germany

Natalie Orlowski¹, Britta Kattenstroth¹, Jens Lange¹, Markus Weiler¹

Introduction

- Long-term datasets of multiple sources ensure detailed comprehension of hydrological and biogeochemical interactions within catchments.
- We present four catchments in South-Western Germany differing in size, land cover, water chemistry, topography, bedrock, soil types and rainfall-runoff characteristics that have been monitored for more than ten years.

Site Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Brugga</th>
<th>Loechernbach</th>
<th>Vauban</th>
<th>Ruetlibach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area [km²]</td>
<td>40.1</td>
<td>1.7</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>Coordinates</td>
<td>47.93756, 7.95161</td>
<td>47.974813, 7.824792</td>
<td>47.95708, 7.83781</td>
<td></td>
</tr>
<tr>
<td>Elevation range [m a.s.l.]</td>
<td>1493-434</td>
<td>1860-213</td>
<td>236</td>
<td>340-585</td>
</tr>
<tr>
<td>Basin type</td>
<td>Mountainous</td>
<td>Submountainous</td>
<td>Urban</td>
<td>Zero-order</td>
</tr>
<tr>
<td>Ø Annual precipitation [mm]</td>
<td>1730</td>
<td>850</td>
<td>856</td>
<td>625</td>
</tr>
<tr>
<td>Evapotranspiration [mm]</td>
<td>566</td>
<td>625</td>
<td>378</td>
<td>970</td>
</tr>
<tr>
<td>Land use [%]</td>
<td>Forest: 75.7; grassland: 21.8; acres: 1.5; impervious: 0.9</td>
<td>Vineyard: 62; mixed agriculture: 18; steep acivities: 12; roads: 4; forest: 4</td>
<td>Urban: 100</td>
<td>Forest; grassland</td>
</tr>
<tr>
<td>Soils</td>
<td>Brown earth, gley, podsol</td>
<td>Pararendzina, Gley</td>
<td>Urban</td>
<td>Cambisols</td>
</tr>
<tr>
<td>Geology</td>
<td>Gneiss, Migmatite</td>
<td>Carbonatic Loess</td>
<td>Fluvial sediments</td>
<td>Crystalline bedrock overlain by periglacial drift cover</td>
</tr>
<tr>
<td>Discharge [m³/s]</td>
<td>0.2, 33.6, 1.6</td>
<td>0.0005, 7.3, 0.013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impressions from our research sites

- Spring discharge measurement at Brugga
- Influence at Loechernbach
- Installation for measuring roof drainage water at Vauban
- Trench installation at Ruetlibach

Data availability

- Discharge (Q)
- Water temperature
- Electric conductivity
- pH, Eh (in O2 and H2)
- Major ions
- Precipitation (P)
- Climate

Research at the Ruetlibach

- During April and May predominantly, wells on the lower transects become activated
- During June through October well activation is spatially more variable
- In summer, saturation zones seem to extend upslope and are of limited horizontal extent
- The pattern returns to activation of the lower and middle transects in November and December
- High spatial variability of absolute rise for each event

Further datasets of e.g. pH, nitrate, pesticides, turbidity, surface runoff, groundwater levels and temperature and soil moisture are available for most of our four research sites.

We are interested in collaborations! Have ideas? Join us!

¹Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Germany; natalie.orlowski@hydrology.uni-freiburg.de